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structurels marginaux

Herbert Susmann 1 & Antoine Chambaz 2

1 University of Massachusetts Amherst and MAP5 (UMR CNRS 8145), Université de
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Résumé. L’une des tâches principales de l’inférence causale est d’estimer l’effet d’un
traitement sur une issue d’intérêt. On peut aussi chercher la relation entre la magnitude
de l’effet et les covariables individuelles. Les modèles structurels marginaux permettent
de définir une telle relation via l’introduction d’un modèle de travail. Les paramètres du
modèle de travail peuvent être estimés de manière efficace par maximum de vraisemblance
ciblée. Dans cette étude, nous présentons un nouvel estimateur bayésien des paramètres
d’un modèle structurel marginal qui combine les avantages de l’inférence bayésienne avec
les propriétés souhaitables de l’approche fréquentiste.

Mots-clés. analyse causale, aprentissage ciblé, inférence bayésienne, statistique semi-
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Abstract. One of the principal tasks in causal inference is to estimate the effect
of a treatment on an outcome. It may also be of interest to learn about the relation-
ship between treatment effect size and individual covariates. Marginal structural models
provide a way to summarize the relationship between treatment effects and covariates
via a working model. The parameters of the working model can be estimated efficiently
via Targeted Maximum Likelihood Estimation (TMLE). In this work, we present a novel
Bayesian estimator of the parameters of a marginal structural model that combines the
benefits of Bayesian inference with the desirable properties of the frequentist TMLE.

Keywords. bayesian inference, causal analysis, semi-parametric statistics, targeted
learning

1 Background

1.1 Introduction

A common goal in causal inference is to estimate the effect of a treatment on an outcome.
In the case of a binary treatment, the popular Average Treatment Effect (ATE) parameter
summarizes the average treatment effect over the population. In many cases it is also of
interest to know how the treatment effect differs in various subgroups of the population.
In particular, there may be a set of potential treatment effect modifiers, variables which
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are thought to change the size of the treatment effect. Ideally we would be able to
simply estimate treatment effects within each stratum of effect modifier we are interested
in. In practice this is often difficult, especially if there are strata with few observations.
Marginal structural models (MSMs) provide one possible path forward. In this approach,
we introduce a working model that summarizes the relationship between the potential
effect modifiers and the treatment effects. We then seek to estimate a set of parameters
for the working model that minimizes the loss between the treatment effect for each
stratum of covariates and the modeled treatment effects given by the working model.

We seek to estimate the MSM parameters within a non-parametric model. The
Targeted Learning framework, specifically Targeted Maximum Likelihood Estimation
(TMLE), provides a general blueprint for constructing efficient estimators of low-dimen-
sional parameters in non-parametric models (Van der Laan & Rose, 2011). Relevant to
our work, a frequentist TMLE for estimating the parameters of a marginal structural
model was presented by Rosenblum and van Der Laan (2010). Liu et al. (2021) apply a
similar approach to estimate MSM parameters for potential treatment effect modifiers.

While most of the development of targeted learning methodology has taken place in a
frequentist framework, there has been work on extending TMLE to a Bayesian context.
Diaz, Hubbard, and van der Laan (2011) describes a Bayesian TMLE for estimating the
average treatment effect, and Dı́az, Savenkov, and Kamel (2020) a targeted Bayesian
approach for estimating class proportions in an unlabeled dataset. The general approach
we take in this paper follows that of both of these papers, which combines the benefits of
Bayesian inference (subjective interpretation of probability, incorporation of priors) with
the benefits of the frequentist approach (efficient, non-parametric inference.)

1.2 Inferential Problem

First, we introduce the structure of the observed data. Let W be a vector of covariates,
Y ∈ {0, 1} a binary indicator of the outcome, and A ∈ {0, 1} a binary indicator of
treatment. Let V = (V1, . . . , Vk) be a subset of the covariates chosen by the analyst to
be possible treatment effect modifiers. Let X = (1, V1, . . . , Vk), with size p = k + 1. Let
O = (W,A, Y ), which we assume is drawn from a distribution P0, where P0 is taken to be
within a non-parametric model M. The observed data set {O1, O2, . . . , On} is assumed
to be composed of n i.i.d. draws from P0.

Before we define the parameter of interest, we introduce notation that will simplify
the exposition. Let the conditional mean and so called “blip” function be

Q̄P (a, w) = EP [Y | A = a,W = w] and Q̃P (w) = Q̄P (1, w)− Q̄P (0, w).

Write Q̄0 ≡ Q̄P0 and Q̃0 ≡ Q̃P0 . We summarize the relationship between treatment effect
and treatment effect modifiers via a working model. Specifically, for all P ∈ M, define
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the parameter β(P ) ∈ Rp as the solution to the optimization problem:

β(P ) = arg min
β∈Rp

EP
[(
Q̃0(W )−X ′β

)2]
. (1)

For convenience we denote β0 ≡ β(P0). While the focus of this paper is on the statistical
estimation of β0, we note that the parameter is causally identifiable under standard
assumptions (i.e. exchangeability and positivity).

2 Targeted Maximum Likelihood Estimation

In this section we present two estimators for β0. The first is a frequentist TMLE (Liu et
al., 2021; Rosenblum & van Der Laan, 2010). The second, which is the main contribution
of our work, is a Bayesian TMLE. In both approaches, our goal is to efficiently estimate β0

within the non-parametric model M. Semi-parametric efficiency theory teaches us that
the efficiency bound is given by varP0(D0(O)), where D0 is called the efficient influence
function (EIF) of the target parameter β at P0 and is given by

D0(O) = M−1
[

2A− 1

g0(A,W )

(
Y − Q̄0(A,W )

)
+ Q̃0(W )− β>X

]
X

where g0(a, w) ≡ EP0 [A = a | W = w] and the normalizing matrix M is given by
M = EP0 [X

>X] (Liu et al., 2021; Rosenblum & van Der Laan, 2010).

2.1 Frequentist Inference

In this section we sketch a brief outline of the frequentist TMLE. First, we need a set of
initial estimators of all the nuisance parameters involved in the target parameter and the
efficient influence function. For the marginal distribution QW,n ≡ P (W = w) we use the
empirical distribution of the covariates, and for Q̄n and gn estimates could be obtained
through parametric estimators like logistic regression, or through flexible machine learning
methods (or an ensemble of methods). Next, we set a parametric sub-model indexed by a
finite dimensional parameter ε which fluctuates the initial estimates, designed such that
it equals the initial estimators Q̄n, gn, and QW,n at ε = 0 and such that its score at ε = 0
spans the EIF of the target parameter. We then estimate the parameter ε using maximum-
likelihood estimation. The initial estimates are then updated according to the parametric
sub-model to yield a new set of estimates. This process is repeated until convergence
(until the MLE of ε becomes sufficiently close to zero). The final set of estimates are
denoted Q̄∗n, g∗n, and Q∗W,n. We then estimate the value of the target parameter β∗n by
solving the optimization problem posed in (1) using Q̄∗n and Q∗W,n as estimates of the
nuisance parameters (as the optimization problem depends only on them). Then β∗n is
asymptotically normal and efficient (Van der Laan & Rose, 2011).
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2.2 Bayesian Inference

The Bayesian version of the frequentist TMLE is derived from the fact that the parametric
sub-model used in the frequentist TMLE defines a likelihood. As such, Bayesian inference
can be performed as usual to find a posterior distribution for the parameter ε. Bayesian
inference requires specifying a prior distribution on the parameter ε. Rather than putting
a prior on ε directly, we prefer to map a prior on the parameter β back to ε. Let
β(ε) : Rp 7→ Rp be a function that maps ε to a parameter value β. We assume that this
function is invertible. Then a prior distribution πβ for β is mapped to a prior distribution
πε on ε by the formula

πε(ε) = πβ (β(ε)) |det (J(ε)) |

where J is the Jacobian of the transformation β(ε). The posterior distribution of ε is
then given by

πε(ε|O1, . . . , On) ∝ πε(ε)
n∏
i=1

pε(Oi | ε).

Sampling techniques such as Markov-Chain Monte Carlo (MCMC) can be used to draw
a set of samples ε(1), . . . , ε(`) from the posterior distribution of ε, which can then be used
to generate a set of samples of β through the mapping β(ε). Our main finding is a
Bernstein-von Mises type result that the posterior distribution of β converges to a multi-
variate normal distribution centered on the truth and with variance given by varP0(D0(O)).
We will also present results from a simulation study illustrating the performance of the
Bayesian TMLE in finite sample settings.
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