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Résumé. Nous investiguons le problème de la minimisation de l’erreur de generalisa-
tion par rapport au meilleur expert dans une famille finie, sous la contrainte d’un accès
limité à l’information. Nous présentons de nouveaux algorithmes permettant d’atteindre
un excès de risque de l’ordre de O(1/T ) (où T représente le nombre de données) avec
grande probabilité, sous l’hypothèse que la fonction de perte est Lipschitz et fortement
convexe.

Mots-clés. Apprentissage statistique, Apprentissage en-ligne, Apprentissage avec
budget, Prédiction avec avis d’experts.

Abstract. We investigate the problem of minimizing the excess generalization error
with respect to the best expert prediction in a finite family in the stochastic setting, under
limited access to information. Assuming that the loss function is Lipschitz and strongly
convex, we design novel algorithms achieving fast rates (O(1/T )) with high probability.

Keywords. Statistical Learning, Online Learning, Budgeted Learning, Prediction
with expert advice.

1 Introduction and main contributions

We consider a generic prediction problem in a stochastic setting: a target random variable
Y taking values in Y is to be predicted by a user-determined forecast F , also modelled
as a random variable, taking values in a closed convex subset X of Rd. The mismatch
between the two is measured via a loss function l(F, Y ). The quality of the agent’s output
is measured by its generalization risk

R(F ) := E
[
l(F, Y )

]
.

To assist us in this task, the forecast or “advice” of a number of “experts” (F1, . . . , FK)
(also modeled as random variables) can be requested. The agent’s objective is to achieve
a risk as close as possible to the risk of the best expert R∗ = mini∈JKKR(Fi). We measure
the performance of the user’s forecast via its excess risk with respect to that best expert.

1



We investigate several scenarios for prediction with limited access to expert advice.
Furthermore, our emphasis is on obtaining fast convergence rates guarantees on the excess
risk (i.e. O(1/T ) or O(1/C), where C is the total query budget). These are possible under
a strong convexity assumption of the loss, specified below.

Assumption 1.1. ∀y ∈ Y: x ∈ X ⊆ Rd 7→ l(x, y) is L-Lipschitz and ρ-strongly convex.

This assumption implies in particular that the loss range is bounded by B := 8ρ
2

L
.

Our contributions are the following.

• As a preliminary, we revisit (Section 2) the full information setting, with no limita-
tions on queries. We contribute a new algorithm that is both simpler than existing
ones. Furthermore, for forecast we only need to consult 2 experts.

• We then investigate (Section 3) the budgeted setting where we have a total query
budget constraint C for the training phase; we give precise efficiency guarantees
on the number of training expert queries needed to achieve a given precision for
forecast.

• Finally, we investigate the m-query setting where the agent is limited to m ≥ 2
queries per training round. We give some lower bounds (Section 4) were we show
that fast rates cannot be achieved if the agent is only allowed to consult one single
expert per training round.

2 Full-information setting

We assume the output of all experts are observed for T rounds (in other words, T i.i.d.
training examples), which is the full information or “batch” setting. We want to output a
final prediction rule with prediction risk controlled with high probability over the training
phase.

We start with putting forward an apparently new rule. The underlying principle will
guide us to construct a budget efficient expert selection rule in the sequel.

Define R̂(Fi) := T−1
∑T

t=1 l(Fi,t, Yt) the empirical loss of expert i, and let d̂ij :=

(T−1
∑T

t=1(Fi,t−Fj,t)2)
1
2 the empirical L2 distance between experts i and j over T rounds.

Finally let α = α(δ) := (log(4Kδ−1)/T )
1
2 , where δ ∈ (0, 1) is a fixed confidence parameter.

Define
∆ij := R̂(Fj)− R̂(Fi)− 6αmax

{
Ld̂ij, Bα

}
.

Consider the following set of experts:

S :=
{
j ∈ JKK : sup

j∈JKK
∆ij ≤ 0

}
.
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Our new full information setting rule is the following:

choose k̄ ∈ S arbitrarily ; pick j̄ ∈ Arg Max
j∈S

d̂k̄j; predict F̂ :=
1

2
(Fk̄ + Fj̄). (1)

The theorem below establishes fast convergence rate for the excess risk of this rule:

Theorem 2.1. If Assumption 1.1 holds and δ ∈ (0, 1) is fixed, then for the prediction rule

F̂ defined by (1), it holds with probability 1− 3δ over the training phase (c is an absolute
constant):

R(F̂ ) ≤ R∗ + cB
log(4Kδ−1)

T
.

3 Global-budget setting

In this section, we consider the global budget setting. More precisely, given an a-priori
defined budget C, at each round the decision-maker selects an arbitrary subset of experts
and asks for their predictions. The player then pays a unit for each observed expert’s
advice. The game finishes when the budget is exhausted, at which point the player
outputs a convex combination of experts for prediction.

We convert the batch rule defined in the full information setting to an ”online” rule
by performing the test ∆ji > 0 for each pair (i, j) after each allocation. This extension
allows us to derive instance dependent bounds, which cover the rates obtained in the
batch setting in the worst case.

Let S∗ := Arg Mini∈JKKR(Fi) denote the set of optimal experts. For i, j ∈ JKK, we

denote by dij := (E[(Fi − Fj)2])1/2 the L2 distance between the experts Fi and Fj. For
i ∈ JKK, we introduce the following quantity:

Λi := min
i∗∈S∗

max

{
L2d2

ii∗

|R(Fi)−R(Fi∗)|2
;

B

R(Fi)−R(Fi∗)

}
.

Define the following set of experts: Sε :=
{
i ∈ JKK : Λi >

1
ε

}
, and let Scε be its com-

plementary.

Theorem 3.1. (Instance dependent bound) Suppose Assumption 1.1 holds. Let C ≥ K
denote the global budget on queries and denote ĝ the output of the procedure described
above. For any ε ≥ 0, if:

C > 578Cε log
(
Kδ−1Cε

)
,

where

Cε :=
∑
i∈Scε

Λi + |Sε| min

{
1

ε
; Λ∗
}
,

where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1 − δ: R(ĝ) ≤ R∗ + cBε,
where c is an absolute constant.
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4 Local-budget setting

In this section, we suppose that the decision-maker is constrained to see only m ≥ 2
experts’ advice per round. We suppose that the horizon is unknown; when the game is
halted, the player outputs a convex combination of the experts.

To circumvent the limitation of observing only m experts per round, in each round,
we sample m experts out of S in a uniform way, where S is the set of non-eliminated
experts. Then the tests ∆ji ≤ 0 and ∆ij ≤ 0 are performed for all sampled experts. If i
or j fail the test, it is eliminated from S.

Finally, when the algorithm is halted, we apply the rule (1) to the set S. The following
theorem gives theoretical guarantees on the excess risk of the output ĝ :

Theorem 4.1. Suppose Assumption 1.1 holds. Let T ≥ 1, if m ≥ 2, then with probability
at least 1− δ:

R(ĝ) ≤ min
i∈JKK

Ri + cB
(K/m)2 log(2TKδ−1)

T
,

where c is an absolute constant.

Finally, we show that if the learner is restricted to see only one expert feedback per
round (m = 1), it is impossible to do better than an excess risk O

(
1/
√
T
)

in deviation.

Lemma 4.2. Consider the squared loss function. For K = 2, and m = 1, for any T > 0,
for any convex combination of the experts ĝ output after T training rounds, there exists a
probability distribution for experts {F1, F2} and target variable Y such that with probability
at least 0.1,

R̂T (ĝ)−R∗ ≥ 1

2
√
T
.
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