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Résumé. En radiobiologie, un ”fold change” est défini comme une mesure de différence
entre l’état irradié et non-irradié d’une certaine entité biologique au cours du temps.
L’objectif de ce travail est de déterminer un petit nombre des types de comportements
les plus représentatifs parmi les nombreuses entités biologiques considérées, ainsi que
d’identifier les pathways biologiques potentiels liés à la réponse à la radiothérapie. Nous
proposons une procédure qui consiste à effectuer simultanément un clustering et un aligne-
ment des estimateurs temporels des fold changes suivis d’une inférence de réseau en util-
isant un modèle à blocs stochastiques. Le clustering est effectué par rapport aux lois
de probabilité, ce qui est motivé par la nécessité de tenir compte des incertitudes et des
corrélations entre les variables. L’approche proposée a été évaluée à travers de nombreuses
études de simulation et montre des perspectives prometteuses sur des données réelles.

Mots-clés. Irradiation in vitro, données omiques, clustering de lois de probabilité,
time warping, modèle à blocs stochastiques.

Abstract. In radiobiology, a fold change is defined as a measure of difference between
irradiated and non-irradiated condition for a certain biological entity over time. The goal
of this work is to determine a small number of the most representative behavior types
among the numerous biological entities that are considered, as well as to identify potential
biological pathways linked to the response to radiotherapy. We propose a procedure that
consists in performing simultaneous clustering and alignment of fold changes’ temporal
estimators followed by network inference using stochastic block model. The clustering is
distribution-based, which is motivated by the need to account for uncertainties and corre-
lations between variables. The proposed approach has been evaluated through numerous
simulation studies and show promising prospects on real data.

Keywords. In vitro irradiation, omic data, distribution clustering, time warping,
stochastic block model.
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1 Context

More than 200 000 patients undergo radiotherapy in France every year. Similarly to
other treatments, it may induce adverse side effects for healthy tissues situated close to
the irradiated tumor. It is thus of substantial importance to study and compare different
modes of radiotherapy that vary in dose, volume, energy, etc. with a goal of selecting
such that minimize the potential undesirable consequences.

This work focuses on studying cellular response to irradiation, namely that of en-
dothelial cells, a key actor in the appearance of radiation adverse effects. Specifically,
we study the expression of different biological entities originating from multiple omics in
vitro datasets (e.g. transcriptomic measuring gene expression, proteomic for protein ex-
pression) that were collected for several time points. The common feature of all datasets is
the presence of two experimental conditions: irradiated and non-irradiated. The quantity
of interest is radio-induced fold change: a measure of irradiation effect represented by the
difference between the two experimental conditions over time.

2 Methodology

We consider an observation Y t
ikj from one of the studied datasets such that i ∈ {1, 2, . . . , ne}

denotes an entity (e.g. a gene in case of transcriptomic data) where ne is the number of
considered biological entities, j ∈ {1, 2, . . . , nr} indicates a replicate, k is the experimen-
tal condition such that k = 0 if control and k = 1 if irradiated, and t ∈ {t1, t2, . . . , tp}
stands for a time point. The presence of multiple replicates in the datasets allows to es-
timate the joint distributions of all variable pairs representing a fold change while taking
into account the correlations between genes, i.e. it is possible that Cov

(
Y t
ikj, Y

t
i′kj

)
6= 0

for i 6= i′. In the course of this project, multivariate ANOVA model is used to estimate
fold changes as vectors with respect to time after irradiation, obtaining deterministic es-

timates of individual fold changes denoted Γi =
(

Γt1
i , . . . ,Γ

tp
i

)
. Since these estimations

are subject to uncertainties that should be considered in subsequent investigations, we
consider the estimators of the fold changes as random Gaussian vectors:

Γ̂i ∼ N (Γi,ΣΓi
) such that ΣΓi

=


σ2

Γ
t1
i

0

. . .

0 σ2

Γ
tp
i



and σ2
Γt
i

=

∑nr

j=1

[
(Y t

i1j − Y t
i1)2 + (Y t

i0j − Y t
i0)2
]

nr − 1
.

A diagonal covariance matrix is considered since we do not have access to timewise covari-
ances due to the fact that the measures for different time points are produced individually,
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hence they are not correlated, i.e. Cov
(
Y t
ikj, Y

t′

i′kj

)
= 0 for (i, i′) ∈ {1, 2, . . . , ne}2 and

t 6= t′.
As a result, we obtain random estimators of pairs of fold changes’ Γ̂i and Γ̂i′ for

(i, i′) ∈ {1, 2, . . . , ne}2 with the joint distribution

[
Γ̂i

Γ̂i′

]
∼ N

([
Γi

Γi′

]
,

[
ΣΓi

K
Kᵀ ΣΓi′

])
. In

order to perform the clustering of the fold changes, an appropriate distance between

distributions needs to be chosen. We introduce a distance d̂2
2, derived from L2-distance

between normally distributed fold changes estimators [1], i.e:

d̂2
2

(
Γ̂i, Γ̂i′

)
= E‖Γ̂i − Γ̂i′‖2 = ‖Γi − Γi′‖2 + Tr(ΣΓi

) + Tr(ΣΓi′
)− 2Tr(K)

using K estimated from the data. This choice allows to fully take the correlations
between the entities into account during clustering. As for the choice of clustering al-
gorithm, k-medoids has been selected as an alternative to k-means that allows to keep
track of all the correlations [2][3]. This clustering procedure is performed combined with
time warping, it is computationally efficient and is able to capture various relationships
between entities.

The final step in the procedure corresponds to omic fold changes’ network inference
with stochastic block model [4]. The network is defined by the adjacency matrix con-
structed using distances between the fold changes. When inferring communities, we use
the initialization sensitivity of stochastic block model by initializing the parameters of
Variational Expectation Maximization (VEM) algorithm with the previously obtained
clusters. As a result, we slightly improve the clusters that remain similar to those obtained

with d̂2
2-based k-medoids on the one hand, and establish a comprehensive link between

the network and the clusters through a model-based approach on the other hand.

3 Results and perspectives

In order to validate the approach, multiple simulation studies have been conducted. The
simulated data attempt to mimic as closely as possible the real fold changes and their
characteristics that are expected to be captured by the proposed procedure. Different
simulation scenarios were used to study different aspects of the approach, such as the role
of correlations between entities and the effect of time warping. In particular, the choices

of d̂2
2 for the distance and k-medoids for the clustering algorithm were validated through

comparison with Wasserstein and Hellinger distances, and k-means and hierarchical clus-
tering algorithms respectively. It has been shown that our approach is the most adapted
for the clustering of random fold changes.

First results of application to the real data have already been obtained. At this point a
small number of distinct response types can be distinguished, with multiple temporal shifts
within each group due to time warping. Currently, the final stage of analysis performed by
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the biologists is taking place, which will allow to validate the approach through comparison
with the existing knowledge in relation with the response to irradiation.

References

[1] Clark R. Givens, Rae Michael Shortt. (1984). A class of Wasserstein metrics for prob-
ability distributions. Michigan Mathematical Journal.

[2] Hae-Sang Park, Jong-Seok Lee, Chi-Hyuck Jun. (2006). A K-means-like Algorithm for
K-medoids Clustering and Its Performance. Expert Syst Appl, 36(2):3336–3341, DOI
10.1016/j.eswa.2008.01.039

[3] Erich Schubert, Peter J. Rousseeuw. (2019). Faster k-Medoids Clustering: Improving
the PAM, CLARA, and CLARANS Algorithms. Similarity Search and Applications,
Springer International Publishing, 11807.

[4] Clement Lee, Darren J. Wilkinson. (2019). A review of stochastic block models
and extensions for graph clustering. Applied Network Science 4, 122 (2019). DOI
10.1007/s41109-019-0232-2

4


