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Abstract. We study the non-parametric estimation of an unknown survival function
S with support on R+ based on a sample with multiplicative measurement errors. The
proposed fully-data driven procedure is based on estimation of the Mellin transform of
the survival function and a regularisation of the inverse of the Mellin transform by a
spectral cut-off. The upcoming bias-variance trade-off is handled by a data-driven choice
of the cut-off parameter. For the analysis of the variance term, we consider the i.i.d. case
and incorporate dependent observations in form of Bernoulli shift processes and β-mixing
sequences.
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1 Data-driven survival function estimator under mulit-

plicative measurement errors

1.1 The model

In this work we are interested in estimating the unknown survival function S : R+ → R+

of a positive random variable X, defined as

S : R+ → [0, 1], x 7→ P(X > x),

given identically distributed copies of Y = XU where X and U are independent of each
other and U has a known density g : R+ → R+. In this setting the survival function
SY : R+ → R+ of Y is given by

SY (y) :=

∫ ∞
0

S(x)g(y/x)dx, y ∈ R+.
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The estimation of S using a sample Y1, . . . , Yn from Y is thus an inverse problem called
multiplicative deconvolution. We will allow for certain dependency structures on the sam-
ple Y1, . . . , Yn. More precisely, we assume that X1, . . . , Xn is a stationary process while
the error terms U1, . . . , Un will be independent and identically distributed (i.i.d.).

1.2 Estimation strategy

To solve this particular multiplicative deconvolution problem, we use the rich theory of
Mellin transforms, in analogy to Brenner Miguel et al (2021). In fact, for a positive
random variable Z and c ∈ R with E(Zc−1) < ∞ we can define the Mellin transform of
the distribution PZ as the function

Mc[PZ ] : R→ C, t 7→ E(Zc−1+it).

As a direct consequence of this definition, we get the convolution theorem, which states for
two positive, independent random variable Z1, Z2 with E(Zc−1

1 ),E(Zc−1
2 ) < ∞, we have

Mc[PZ1Z2 ] =Mc[PZ1 ]Mc[PZ2 ]. More general, we define for any function h ∈ L1(R+, x
c−1),

the space of all measure function with
∫∞
0
|h(x)|xc−1dx <∞, the Mellin transformMc[h] :

R→ C by

Mc[h](t) :=

∫ ∞
0

h(x)xc−1+itdx, t ∈ R.

Using this definition, we can state that, under the assumption E(X1/2) <∞, the following
calculation rule of the Mellin transform of a survival function holds true

M1/2[S](t) = (1/2 + it)−1M3/2[PX ](t), t ∈ R.

Addtionally, E(X1/2) implies that S ∈ L2(R+), that is ‖S‖2 :=
∫∞
0
S2(x)dx <∞, and

S(x) =
1

2π

∫ ∞
−∞

x−1/2−it
M3/2[PX ](t)

(1/2 + it)
dt, x ∈ R+,

using the inverse Mellin transform, compare Brenner Miguel et Phandoidaen (2021).

Thus, we propose the spectral-cut off estimator Ŝk for k ∈ R+ by

Ŝk(x) :=
1

2π

∫ k

−k
x−1/2−it

M̂(t)

(1/2 + it)M3/2[g](t)
dt, with M̂(t) := n−1

n∑
j=1

Y
1/2+it
j . (1)

1.3 Upper bounds and data-driven method

Setting Sk := E(Ŝk) and assuming that E(Y ) < ∞ we deduce the usual squared bias
variance decomposition

E(‖Ŝk − S‖2) = ‖S − Sk‖2 + E(‖Ŝk − Sk‖2),
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where we can decompose the variance term in a term dependent on the underlying inverse
problem and a term driven by the dependence structure, that is

E(‖Ŝk − Sk‖2) ≤
E(Y1)

2πn

∫ k

−k
|(1/2 + it)M3/2[g](t)|−2dt+

1

2π

∫ k

−k
Var(M1/2[ŜX ](t))dt

where ŜX(x) := n−1
∑n

j=1 1(0,Xi)(x) is the empirical survival function. In total, we can
show for any k ∈ R+,

E(‖Ŝk − S‖2) ≤ ‖S − Sk‖2 + E(Y1)
∆g(k)

n
+

1

2π

∫ k

−k
Var(M1/2[ŜX ](t))dt,

where ∆g(k) := (2π)−1
∫ k

−k |(1/2 + it)M3/2[g](t)|−2dt. In other words, we are able to
decompose the risk of our estimator into a squared bias term, an variance term which is
driven by the inverse problem and a variance term which is dependent on the dependence
structure of the sample X1, . . . , Xn.
For the case of independent observations X1, . . . , Xn we deduce that

1

2π

∫ k

−k
Var(M1/2[ŜX ](t))dt ≤ E(X)

n

making it neglectable. For different dependency structures, for instance beta mixing or
functional dependency measures, upper bounds for the second variance term are derived
in Brenner Miguel et Phandoidaen (2021).

1.4 Data-driven choice of k̂

While the squared bias term ‖S − Sk‖2 is decreasing for k increasing, the variance term

E(‖Ŝk − Sk‖2) is increasing. This contrary behaviour of these terms implies that the
choice of a suitable cut-off parameter k ∈ R+ is non-trivial. To handle this bias-variance
dilemma, we suggest a data-driven choice of the parameter k ∈ R+ based on a penalized
contrast approach, that is, for a χ > 0 we set

k̂ := arg min
k∈Kn

−‖Ŝk‖2 + 2χσ̂Y ∆g(k)n−1,

where Kn := {k ∈ {1, . . . , n} : ∆g(k) ≤ n} and σ̂Y := n−1
∑n

j=1 Y
1/2
j . Then under

regularity assumptions on g, and the moment assumption E(Y
5/2
1 ) < ∞, we can state

that for all χ > 96,

E(‖S − Ŝk̂‖
2) ≤ 6 inf

k∈Kn

(
‖S − Sk‖2 + 2χE(Y1)

∆g(k)

n

)
+ C(g, f)

(
1

n
+ Var(σ̂X) +

∫ n

−n
Var(M1/2[ŜX ](t))dt

)
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where C(g, f) > 0 is a constant depending on χ, the error density g, E(X
5/2
1 ), σX := E(X1)

and σ̂X := n−1
∑n

j=1Xj. Thus, we can say that the data-driven estimator Ŝk̂ realises the
optimal choice of k ∈ R+ among the set Kn which minimise the sum of the squared
bias and variance term up to an access risk consisting of an neglectable n−1 term and a
term driven by the dependency structure of the sample X1, . . . , Xn. Again, in the case of
independent observations this term is neglectable, too.

1.5 Graphiques

To visualise the finite sample behaviour of our estimator, we present an extract of the sim-
ulation study of Brenner Miguel et Phandoidaen (2021) where we visualise the estimator

S̃k̂ := max(min(Ŝk̂, 1), 0) where obviously ‖S̃k̂ − S‖2 ≤ ‖Ŝk̂ − S‖2 holds.
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Figure 1: Considering the estimators S̃k̂, we depict 50 Monte-Carlo simulations with error
densities g(x) = 1(0,1)(x) (left) and g(x) = 1(0.5,1.5)(x) (right) with n = 1000. The true
survival function S of an Γ4,0.5 distribution is given by the black curve while the red curve
is the point-wise empirical median of the 50 estimates.
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