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Résumé. Dans un objectif de prévention et/ou d’anticipation des accidents routiers,
la modélisation statistique de la dépendance spatiale et des facteurs de risque poten-
tiels représente un atout majeur. L’intérêt de cette étude se porte sur la localisation
géoréférencée des accidents. Nous avons croisé ces événements avec des co-variables car-
actérisant la zone géographique d’étude (socio-démographiques et infrastructures par ex-
emple). Après une sélection de variables (méthodes de pénalisation, random forest, ...), la
survenue des accidents a été modélisée par un processus de Cox log-Gaussien spatial. Les
résultats de cette analyse permettent l’identification des principaux facteurs de risques
d’accident et l’identification des zones critiques. Les données mises en application sont
les accidents routiers s’étant produits entre 2017 et 2019 dans la CAGB (communauté
urbaine de Besançon).
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Abstract. In order to prevent and/or forecast road accidents, the statistical mod-
elling of spatial dependence and potential risk factors is a major asset. The focus of
this study is on the georeferenced location of accidents. We crossed these events with
covariates characterizing the study geographical area such as sociodemographic and in-
frastructure measures. After a variable selection (penalization methods, random forest,
...), the occurrence of accidents was modelled by using a spatial log-Gaussian Cox process.
The results of this analysis enable us to identify principal risk factors of road accidents
and critical areas. The data used are road accidents that occurred between 2017 and 2019
in the CAGB (urban community of Besançon).
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1 Introduction

Road accidents being one of the main causes of death in the world are therefore the
subject of serious concern. Statistical analyses of road accident data are major tools for
law enforcement agencies who can act to prevent and predict these events. Depending
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on the main goal of the analysis, several methods can be undertaken. The focus of this
study here is to identify the areas of the CABG (urban community of Besançon) with high
occurrence rates of road accidents. Taking into account the spatial characteristics of these
accidents therefore seems essential. Road accident data of this study are georeferenced
points, called point pattern, and the main motivation is to understand how spatially these
points are located. In the field of spatial statistics, point process are stochastic mechanism
that generates a countable set of events in the plane (point pattern).

As the locations of road accidents are at the heart of the subject, these events have
been modelled by a spatial point process named log-Gaussian Cox process. Moreover in
order to identify accident risk factors, additional information was brought as covariates
in the model.

2 Material and methods

2.1 Case study

The study is focused on road accidents that occurred between 2017 and 2019 in the
CAGB (Communauté d’Agglomération du Grand Besançon), headquarters of the region
Bourgogne-Franche-Comté. This urban community is composed of 68 cities including
Besançon which is the central municipality. These road accidents are georeferenced and
represent hence our point pattern to be analysed.

2.2 Log Gaussian Cox Processes

Data in the form of a set of points x = {x1, . . . , xn} of R2, irregularly distributed
over a study area, is called a spatial point pattern and referred to the locations as events
(Diggle, 2013). This set of points is considered to be the results from the realization of
an underlying stochastic mechanism called point process. As the analysis is not about
the points themselves, but about the way the points were generated, fit a spatial point
process is generally the approach undertaken to model such a situation. Dealing with
point processes lies on the study of the intensity of the point process and interaction
between points. The analysis of the intensity is usually the most important, it is the
average number of random points per unit area. Then, interaction between points is
investigate whether the points appear to have been placed independently of each other or
whether they exhibit some kind of interpoint dependence.

We suggest in this paper to model our point pattern by a Cox process and more
particularly by a Log-Gaussian Cox Process (LGCP). An LGCP is a Cox process whose
log-intensity is modelled by a latent Gaussian process. For more details see for example
Moller et al. (1998), Diggle et al. (2013) or Taylor et al. (2015). In practice, the adjustment
is carried out on a calculation grid (considered regular). The spatial LGCP is noted as
follows:
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X(u) ∼ Poisson(Λ(u))

Λ(u) = CA exp(Z(u)β + Y (u))

where X(u) denotes the number of events in the computational grid cell containing u,
CA is cell area, Z(u) is a vector of covariate values, with associated effects β and Y =
{Y (u) : u ∈ R2} is a Gaussian process (which has variance σ2 and exponential correlation
function r(t) = exp(−t/φ)).

Bayesian inference for the parameters Y, β, σ and φ is performed using Markov chain
Monte Carlo methods. The reader may find a comprehensive description in Robert (1996),
Robert and Casella (2004) or Taylor et al. (2015).

2.3 Covariate description

As seen before, covariate can be included in the definition of the intensity of the LGCP.
Hence, information from data sources such as INSEE (Institut National de la Statistique
et des Etudes Economiques), data.gouv or Open Street Map Data, has been collected.
These measures have been merged into one spatial dataset (interpolation methods were
used) and onto a grid, composed of regular cells.

The covariates can be classified in three groups: sociodemographic, road infrastruc-
tures and global infrastructures. As sociodemographic covariate we have the population,
that is, the number of individuals per cell. As road infrastructure covariates we have, per
cell, the length of municipal roads and national roads (departmental, national or high-
way), the number of traffic lights, the number of stop sign, the number of passage way, the
number of give way and the number of radars. Finally, as global infrastructure covariates
we have, per cell, the number of shops, the number of food shops (such as supermarkets
or grocery stores for example), the number of restaurants, the number of leisure activities
(such as cinemas or tennis courts for example), the number of schools, the number of
colleges, the number of gas stations and the number of stations (such as train stations or
taxis for example). The total number of covariate is sixteen.

Some of these measures were chosen as they showed relevant characteristics in previous
accident studies (Ramı́rez and Valencia, 2021; Spychala et al., 2021) and others were taken
as they could probably show significant results.

2.4 Variable Selection

As the number of covariates is quite important and the point process model chosen to
be fitted is computational challenging, a variable selection is intended. To do this, super-
vised learning methods are used in order to analyse dependencies between the response
variable, which gives the number of accidents, and covariates mentioned before. Several
methods were used such as Random Forest, Elastic Net or Poisson models.
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3 Results

After fitting a LGCP, we can interpret the results and thus meet the objectives set.
To quantify the risks of potential factors, focus is on the covariate effects. Estimations of
the parameters β make it possible to conclude on the significant or non significant effect
of the covariate and hence, identify the most dangerous factors.

Finally, in order to identify the critical geographical areas of low or high incidence,
the following quantity P(exp(Y ) > k|X) is plotted on the study window as in Taylor
et al. (2015). The map obtained represents the probability that the average number of
accidents per cell exceeds the threshold k and enable to visualize the critical zones.
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